C(18)—N(1)—C(17)	119.2 (4)	C(20)—C(19)—C(18)	109.0 (3)
C(38)—N(2)—C(34)	122.7 (5)	C(19)—C(20)—C(21)	111.8 (4)
C(39)—N(2)—C(34)	118.7 (4)	C(22)—C(21)—C(20)	112.4 (4)
C(39)—N(2)—C(38)	118.6 (5)	C(21)—C(22)—C(23)	114.3 (4)
C(6)—C(1)—O(1)	127.3 (4)	C(24)—C(23)—C(22)	113.1 (4)
C(2)—C(1)—O(1)	111.3 (4)	C(23)-C(24)-C(25)	114.9 (4)
C(2)—C(1)—C(6)	121.4 (4)	C(24)-C(25)-C(26)	113.9 (4)
C(3)—C(2)—O(2)	126.6 (4)	C(27)-C(26)-C(25)	114.6 (4)
C(1)-C(2)-O(2)	112.3 (3)	C(28)-C(27)-C(26)	113.4 (4)
C(1)—C(2)—C(3)	121.1 (4)	C(29)—C(28)—C(27)	113.9 (4)
C(4)—C(3)—C(2)	120.4 (4)	C(28)—C(29)—C(30)	113.3 (4)
Cl(1) - C(3) - C(2)	120.5 (3)	C(31)-C(30)-C(29)	114.3 (4)
Cl(1)—C(3)—C(4)	119.0 (3)	C(30)-C(31)-C(32)	113.0 (4)
C(3)—C(4)—O(3)	125.2 (4)	C(33) - C(32) - C(31)	114.9 (5)
C(5)—C(4)—O(3)	116.7 (4)	C(35)-C(34)-N(2)	118.9 (5)
C(5)—C(4)—C(3)	118.0 (4)	C(36)—C(35)—C(34)	122.5 (7)
C(6)—C(5)—O(4)	124.9 (4)	C(37)-C(36)-C(35)	119.8 (7)
C(4)-C(5)-O(4)	117.1 (4)	C(38)-C(37)-C(36)	117.5 (6)
C(4)—C(5)—C(6)	117.9 (4)	C(37)—C(38)—N(2)	118.6 (5)
C(5) - C(6) - C(1)	120.1 (4)	C(40)-C(39)-N(2)	110.4 (5)
Cl(2)—C(6)—C(1)	120.8 (3)	C(39)—C(40)—C(41)	114.5 (4)
Cl(2)—C(6)—C(5)	119.0 (3)	C(40)C(41)C(42)	114.9 (4)
C(12)—C(7)—O(5)	127.3 (4)	C(41)—C(42)—C(43)	115.0 (4)
C(8)C(7)O(5)	111.5 (4)	C(42)-C(43)-C(44)	117.1 (5)
C(8)-C(7)-C(12)	121.2 (4)	C(43)—C(44)—C(45)	117.3 (5)
C(9)—C(8)—O(6)	126.5 (4)	C(44)-C(45)-C(46)	118.4 (5)
C(7)—C(8)—O(6)	112.2 (3)	C(47)-C(46)-C(45)	117.1 (5)
C(7)-C(8)-C(9)	121.2 (4)	C(46)C(47)C(48)	117.3 (5)
C(10)-C(9)-C(8)	120.4 (4)	C(47)—C(48)—C(49)	117.8 (5)
Cl(3)C(9)C(8)	121.6 (3)	C(50)C(49)C(48)	118.5 (5)
Cl(3)—C(9)—C(10)	118.0 (3)	C(49)C(50)C(51)	117.0 (5)
C(9)-C(10)-O(7)	124.7 (4)	C(50)—C(51)—C(52)	117.0 (5)
C(11)-C(10)-O(7)	117.0 (4)	C(51)—C(52)—C(53)	117.2 (6)
C(11)-C(10)-C(9)	118.3 (4)	C(52)—C(53)—C(54)	122.5 (7)
C(12)-C(11)-O(8)	124.6 (4)	O(2) - Be(1) - O(5)	116.6 (4)
C(10)C(11)O(8)	117.4 (4)	O(6) - Be(1) - O(5)	98.6 (4)
C(10)-C(11)-C(12)	118.0 (4)	O(6)—Be(1)—O(2)	113.8 (3)
C(11)-C(12)-C(7)	120.4 (4)	O(1)—Be(1)—O(5)	117.8 (3)
Cl(4)-C(12)-C(7)	120.8 (3)	O(1) - Be(1) - O(2)	98.2 (4)
Cl(4) - C(12) - C(11)	118.7 (3)	O(1)—Be(1)—O(6)	112.8 (4)

The single crystals of this compound tend to be twinned, therefore, only a very small sample could be measured, resulting in a very high number of unobserved reflections. This is the reason for the difference between unweighted and weighted R values. The ratio could be improved by using only $F > 3\sigma(F)$ data, but then the reflections/parameter ratio would deteriorate.

One common isotropic displacement parameter for the H atoms was used. All H-atom positions could be recognized in difference Fourier maps. The refinement was carried out by the newly-developed Levenberg-Marquardt least-squares algorithm LQFLEV (Spengler & Zimmermann, 1994) using the second derivatives of the structure factors.

Data collection: local software (Gomm, 1993). Cell refinement: local software (Gomm, 1993). Data reduction: local software (Gomm, 1993). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1985). Program(s) used to refine structure: *CRYSTAN* (Burzlaff & Rothammel, 1988). Software used to prepare material for publication: *CRYSTAN*.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1098). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Burzlaff, H. & Rothammel, W. (1988). Proceedings of the CIC Meeting, Tübingen, pp. 415-421. Berlin: Springer-Verlag.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182.

- Gomm, M. (1993). Crystallographic Computing 6. A Window on Modern Crystallography, edited by H. Flack, L. Parkany & K. Simon, pp. 1-11. Oxford Univ. Press.
- Krogh Andersen, E. (1967). Acta Cryst. 22, 188-208.
- Krogh Andersen, E. & Krogh Andersen, I. G. (1975). Acta Cryst. B31, 379–390.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Spengler, R. & Zimmermann, H. (1994). Least Squares and Levenberg-Marquardt Algorithm in the Case of Pseudosymmetric Structures. Z. Kristallogr. Suppl. Issue 8, p. 603.

Acta Cryst. (1995). C51, 193-195

$(\eta^{5}$ -Cyclopentadienyl)[2-(1,1-diphenylethyl- C^{2})phenyl- C^{1}]oxo(trimethylsilylmethylthio)tungsten, [WO(C₄H₁₁SSi)-(C₅H₅)(C₂₀H₁₆)]

NATHALIE BRUNET, PETER LEGZDINS, JAMES TROTTER AND VIVIEN C. YEE

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

(Received 7 March 1994; accepted 21 June 1994)

Abstract

Treatment of $[CpW(NO)(CH_2SiMe_3)(CH_2CPh_3)]$ with sulfur produces $[CpW(O)(SCH_2SiMe_3)(CH_2CPh_2-C_6H_4)]$, in which S is inserted in one W—C bond, but in addition, replacement of NO by O and orthometallation have occurred.

Comment

In a study of the reactions of the mixed alkyl complex $CpW(NO)(CH_2SiMe_3)(CH_2CPh_3)$ (Brunet, Debad, Legzdins, Trotter, Veltheer & Yce, 1993), treatment with sulfur was found to give only one isolable product in very low yield. The present analysis has established the structure of this product, (I), as $[CpW(O)(SCH_2SiMe_3)(CH_2CPh_2C_6H_4)]$. Sulfur has been inserted preferentially into one of the W—C(alkyl) bonds, but in addition, the nitrosyl group has been replaced by an oxo ligand and orthometallation has occurred.

Acta Crystallographica Section C ISSN 0108-2701 © 1995

C10 C11 C12 C13 C14

C15 C16

C17

C18 C19

C20 C21 C22 C23 C24

C25 C26 C27 C28 C29 Cpt

W_S W_O W_C W_C

S---W O---W O---W C10---

W-S

Fig. 1. View of the molecule (50% probability ellipsoids).

Experimental

The method of synthesis of the title complex is that described by Brunet (1988) and has been deposited.

Crystal data

$[WO(C_4H_{11}SSi)(C_5H_5)-$	Mo $K\alpha$ radiation
$(C_{20}H_{16})]$	$\lambda = 0.7107 \text{ Å}$
$M_r = 640.57$	Cell parameters from 25
Triclinic	reflections
PĪ	$\theta = 21.9 - 23.1^{\circ}$
<i>a</i> = 9.415 (2) Å	$\mu = 4.57 \text{ mm}^{-1}$
b = 11.539 (3) Å	T = 294 K
c = 13.388 (2) Å	Plate
$\alpha = 72.18 (1)^{\circ}$	$0.51 \times 0.20 \times 0.08 \text{ mm}$
$\beta = 79.37 (1)^{\circ}$	Orange
$\gamma = 76.90 (3)^{\circ}$	-
V = 1338.2 (5) Å ³	
Z = 2	
$D_x = 1.60 \text{ Mg m}^{-3}$	
Data collection	
Enrat–Nonius CAD-4F	5059 observed reflections
diffractometer	$[I > 3\sigma(I)]$
$\omega/2\theta$ scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction:	$h = -12 \rightarrow 12$
analytical (de Meulenaer	$k = -14 \rightarrow 14$
& Tompa, 1965)	$l = -17 \rightarrow 0$
$T_{\rm min} = 0.32, \ T_{\rm max} = 0.70$	3 standard reflections
609/ measured reflections	monitored every 150
6097 independent reflections	reflections
	intensity decay: 6.0%

Refinement

Refinement on F $(\Delta/\sigma)_{\rm max} = 0.05$ $\Delta \rho_{\rm max} = 1.9 \ {\rm e} \ {\rm \AA}^{-3}$ R = 0.027 $\Delta \rho_{\rm min} = -1.1 \ {\rm e} \ {\rm \AA}^{-3}$ wR = 0.032S = 1.25Extinction correction: none 5059 reflections Atomic scattering factors 298 parameters from International Tables H-atom parameters not for X-ray Crystallography refined (1974, Vol. IV) $w = 1/\sigma^2(F)$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

х	у	Ζ	U_{eq}
0.28980 (2)	0.01377 (1)	0.16476(1)	0.032
0.19993 (12)	0.20583 (9)	0.21432 (8)	0.042
0.20743 (15)	0.47831 (11)	0.12039 (11)	0.050
0.4570 (3)	0.0530 (3)	0.1107 (2)	0.045
0.1403 (7)	-0.1153 (5)	0.1307 (5)	0.067
0.0393 (5)	-0.0165 (7)	0.1532 (4)	0.067
0.0722 (7)	0.0899 (5)	0.0775 (5)	0.071
0.1884 (7)	0.0564 (7)	0.0070 (4)	0.075
0.2342 (6)	-0.0686 (6)	0.0403 (4)	0.064
0.2465 (6)	0.3228 (4)	0.0932 (4)	0.053
0.3057 (7)	0.4703 (6)	0.2294 (5)	0.076
0.0065 (7)	0.5250 (6)	0.1557 (6)	0.083
0.2730 (9)	0.5906 (6)	-0.0028 (6)	0.090
0.2471 (4)	-0.0290(3)	0.3399 (3)	0.035
0.2475 (4)	-0.1659 (3)	0.4040 (3)	0.034
0.3684 (4)	-0.2360 (4)	0.3414 (3)	0.036
0.3983 (4)	-0.1753 (4)	0.2341 (3)	0.036
0.5104 (5)	-0.2353 (4)	0.1725 (3)	0.046
0.5905 (5)	-0.3505 (5)	0.2150 (4)	0.053
0.5602 (5)	-0.4096(4)	0.3213 (4)	0.052
0.4500 (5)	-0.3528(4)	0.3836(3)	0.046
0.0982 (4)	-0.2034(4)	0.4099 (3)	0.039
-0.0333 (5)	-0.1217 (4)	0.4254 (4)	0.051
-0.1674 (5)	-0.1513 (6)	0.4293 (5)	0.067
-0.1759 (6)	-0.2662 (7)	0.4203 (6)	0.082
-0.0498 (6)	-0.3474 (6)	0.4073 (6)	0.076
0.0874 (5)	-0.3176 (4)	0.4031 (4)	0.053
0.2848 (4)	-0.1837 (4)	0.5160 (3)	0.037
0.4203 (5)	-0.1622 (4)	0.5268 (3)	0.047
0.4572 (6)	-0.1738(5)	0.6249 (4)	0.060
0.3600 (6)	-0.2063 (6)	0.7148 (4)	0.065
0.2266 (6)	-0.2288(5)	0.7062 (3)	0.060
0.1890 (5)	-0.2196 (4)	0.6071 (3)	0.048
0.1349	-0.0108	0.0817	0.07

⁺Cp is the centroid of cyclopentadienyl ring.

Table 2. Selected geometric parameters (Å, °)

	-	•	
	2.431 (1)	SC6	1.819 (5)
1	1.706 (3)	Si—C6	1.881 (5)
10	2.222 (3)	Si—C7	1.836 (6)
13	2.183 (4)	Si—C8	1.859 (6)
p	2.103 (3)	Si—C9	1.860 (7)
0	92.7 (1)	C6—Si—C7	109.7 (3)
C10	70.9(1)	C6—Si—C8	109.7 (3)
- C 13	138.7 (1)	C6—Si—C9	107.2 (3)
—Ср	108.6(1)	C7—Si—C8	109.9 (3)
-C10	115.0(1)	C7—Si—C9	110.3 (3)
C13	89.7 (1)	C8—Si—C9	110.0 (3)
—С <i>р</i>	125.6(1)	S—C6—Si	109.4 (2)
W-C13	70.8 (1)	W-C10-C11	117.9 (2)
W—Cp	119.2 (1)	W-C13-C12	121.9 (3)
W—Cp	103.2(1)	W-C13-C14	119.7 (3)
	102.9 (2)		

The structure was determined by Patterson methods.

Data collection: *CAD-4 Software* (Enraf-Nonius, 1989). Cell refinement: *CAD-4 Software*. Data reduction: local program. Program(s) used to refine structure: *ORFLS* (Busing, Martin & Levy, 1962). Molecular graphics: *ORTEP*II (Johnson, 1976).

We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry, and details of synthesis and a packing diagram have been deposited with the IUCr (Reference: BK1047). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

- Brunet, N. (1988). MSc thesis, Univ. of British Columbia, Vancouver, Canada.
- Brunet, N., Debad, J. D., Legzdins, P., Trotter, J., Veltheer, J. E. & Yee, V. C. (1993). Organometallics, 12, 4572–4579.
- Busing, W. R., Martin, K. O. & Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.

Acta Cryst. (1995). C51, 195-196

(Tetraphenylporphyrinato)zirconium(IV) Diacetate

JEAN L. HUHMANN, JOYCE Y. COREY AND NIGAM P. RATH

Department of Chemistry, University of Missouri-St Louis, St Louis, Missouri 63121, USA

(Received 15 February 1994; accepted 19 July 1994)

Abstract

The title compound, bis(acetato-O,O')[5,10,15,20-tetraphenyl-21*H*,23*H*-porphinato(2–)- N^{21} , N^{22} , N^{23} , N^{24}]zirconium, [Zr(C₂H₃O₂)₂(C₄₄H₂₈N₄)].CH₂Cl₂, crystallizes in space group *C*2/*c* with *Z* = 4. The two acetate ligands are coordinated in a mutually *cis* configuration and the geometry about the Zr center approximates a square antiprism. The distance of the Zr atom from the porphyrin plane is 1.036 (7) Å. The average Zn—N and Zr—O bond distances are 2.257 (7) and 2.260 (6) Å, respectively, and the average C_{carbonyl}—Zr—C_{carbonyl} and N—Zr—N(-*x*, *y*, $\frac{1}{2}$ -*z*) angles are 85.1 (4) and 125.4 (3)°, respectively.

Comment

The title compound, $[(TPP)Zr(OAc)_2]$, was prepared by the reaction of (5,10,15,20-tetraphenylporphyrinato)zirconium(IV) dichloride with a refluxing mixture of acetic acid and pyridine (1:1.5), and crystallized by

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved the addition of boiling H₂O. The diacetate was recrystallized from CH₂Cl₂-heptane solution (1:1) as the CH₂Cl₂ solvate. This procedure is similar to that described for the preparation of (2,3,7,8,12,13,17,18octaethylporphyrinato)zirconium(IV) diacetate [(OEP)-Zr(OAc)₂] (Buchler *et al.*, 1971), the structure of which has been briefly mentioned and shows the metal to be eight-coordinate with bidentate *cis* acetate ligands (Hoard, 1975).

Related compounds which have been crystallographically characterized are $[(OEP)Zr(CH_2SiMe_3)_2]$ (Brand & Arnold, 1992), $[(TPP)ZrCl_2(thf)]$ (Kim, Whang, Kim & Do, 1993), $[(OEP)ZrCl_2]$, $[(OEP)Zr(O'Bu)_2]$ and $[(OEP)ZrMe_2].CH_2Cl_2$ (Brand & Arnold, 1993).

Group IV d^0 metalloporphyrins with *cis* coordination of ligands are of interest because of the potential analogy to Group IV d^0 metallocenes, the Ziegler–Natta catalysts that promote polymerization of ethylenes and propylene.

Fig. 1. Displacement ellipsoid drawing (*SHELXTL-Plus*; Sheldrick, 1991) of the title molecule. Ellipsoids enclose 50% probability and H atoms have been omitted. The molecule has twofold rotational symmetry.